The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids 1. The Fully Optimal Basis of a Bounded Region. Erratum

Emeric Gioan^{*} Michel Las Vergnas[†]

December 5, 2010

In [1], Proposition 5.1 and Theorem 5.3 do not hold as stated. In both, the hypothesis that p < f are the first two elements of B_{\min} should be replaced by the hypothesis that p < f are the first two elements of E. Under this new hypothesis, proofs are valid without change¹. However, to avoid a possible confusion with the notation $B_{\min} = \{p, f, \ldots\}_{<}$ used throughout the paper, we should rather write $E = \{e_1, e_2, \ldots\}_{<}$.

Proposition 5.1 Let M be an ordered matroid on a set $E = \{e_1, e_2, \ldots\}_{<}$. A basis B of M is internal and uniactive if and only if $(E \setminus B) \cup \{e_1\} \setminus \{e_2\}$ is internal and uniactive in M^* .

Theorem 5.3 Let M be a bounded acyclic ordered oriented matroid on a set $E = \{e_1, e_2, \ldots\}_{<}$. We have $\alpha(-e_1M^*) = (E \setminus \alpha(M)) \cup \{e_1\} \setminus \{e_2\}.$

The duality property in Theorem 5.3 is called the *active duality*. In the last part of Section 5, when comparing active duality to linear programming duality, it is implicitly assumed that $p = e_1$ and $f = e_2$, implying that $\{e_1, e_2\}$ is independent.

E. Gioan, M. Las Vergnas, The active bijection in graphs, hyperplane arrangements, and oriented matroids 1. The fully optimal basis of a bounded region, European Journal of Combinatorics 30 (8) (2009), 1868–1886.

^{*}C.N.R.S., Montpellier

 $^{^{\}dagger}$ C.N.R.S., Paris

¹Independently, in line 10 of the proof of Proposition 5.1, instead of B'-f read $(E \setminus B') \setminus \{f\}$.